WAVE SUMMIT + 2020 :如何打造一个成功的AI开源项目?


12 月 20 日,百度在北京举办了 WAVE SUMMIT + 2020 深度学习开发者峰会。作为面向深度学习开发者一年两次的技术盛会,现场技术干货满满。

中国AI开源项目发展是今年开发者峰会的一大重点议题。Zilliz 创始人兼首席执行官星爵受邀,与北京大学助理教授董豪PreAngel 合伙人李卓梈,以及复旦大学计算机科学技术学院教授、 fastNLP 负责人邱锡鹏一起,共同探讨如何打造成功的 AI 开源项目。

本次圆桌从三个主要问题出发,多维度剖析中国当下开源项目现状,结合全球开源发展趋势,探讨 AI 开源项目的机遇与发展。

01

如何衡量开源项目是否成功?

李卓梈

PreAngel 合伙人

开源与创业一样,想要“从无到有”,首先要有一个好的切入点。确定了切入点后,才会有开发者来使用,也是真正创造价值。

另一方面,想要将开源项目做到“从有向强”,维持长期稳定的发展,真正长远的走下去,需要社区里参与者们的共同维护。社区里多元化的贡献者,项目里优秀的团队成员,才能为项目持续注入新鲜的血液。

星爵

Zilliz 创始人兼首席执行官

LF AI&DATA 董事会主席

如果选择定性与定量的对开源项目进行衡量,一个成功的开源项目除了要有活跃的开发者社区,也一定要有活跃的用户社区。这两个社区有着本质上的区别,对应到实际操作层面,就需要将技术的研发与技术的运营放到同一优先级。

目前国内开源还处于非常初级的阶段。写出了很好的代码,并开放出去,实际上只是开源的第一步。后期对代码的布道、传播,与写出代码同样重要

一个成功的开源项目,需要花费一半的时间在“写代码”,一半的时间在“布道”,也就是技术运营。

这里分享一个开发者社区运营的经验。在于开发者沟通时,社区需要有明确的纲领、白皮书或者系统架构,总结起来就是四个字——文档优先

当然还有用户社区运营的小技巧,就是将自己的项目作为集成齿轮。开源项目被最多使用的时候,实际上也是项目被集成最多的时候

那么,是否开源项目拥有越多的功能,就会被越多的用户使用?答案是否定的。开源项目和传统项目的最大区别,就是开源将选择权无限交给了用户。主动将项目作为集成齿轮,才能更多的被用户使用。

02

相对于其他领域,

AI开源项目有哪些特点?

邱锡鹏

复旦大学计算机科学技术学院教授

fastNLP 负责人

开源在 AI 领域已经非常活跃。例如,业内许多 AI 类的论文都会选用开源的形式公开代码,以提升其影响力与信用度。

目前 AI 的开源整体呈现碎片化,也缺乏后期维护。尤其是在算法高速迭代的背景下,碎片化的 AI 开源项目很难拥有长远的生命力

其次, AI 类开源项目大多数都需要进行二次开发,无法像传统开源项目一样“不求甚解,直接使用”。AI 开源项目需要提前训练,理解代码,再进行部署,门槛也相对提高了。

星爵

Zilliz 创始人兼首席执行官

LF AI&DATA 董事会主席

AI 开源项目有两大趋势。

首先, AI 还处于发展早期。无论是 AI 算法,还是 AI 模型,都存在高速迭代的状态。每年 AI 顶会中相关论文数量也证明了这一点。当然,发展也意味着机会。允许更多人找到适合发展的点,做出竞争优势,吸引更多用户。

其次,尽管 AI 在社会经济中有了一些应用场景,但我认为 AI 的 Killer Application 其实还没有被发现。这点与 10 年前的移动计算相似。移动计算刚兴起的时候,也有许多大众“认为”很好的应用,但都在十多年后收敛为智能出行、外卖、移动交通等真正的杀手级应用。

从社会影响力而言,人工智能远远大于移动计算,因此技术周期也会更加长远, AI 行业一定大有可为。

03

中国AI开源事业有哪些机遇与挑战?

董豪

北京大学助理教授

机遇与挑战是并存的。人才方面,我相信中国开发者都有很好的代码能力,但语言其实是中国开源项目走出去的一大阻碍。很多开源项目有着优秀的代码,但文档却因为语言问题晦涩难懂,错过了很多机会。

这点我们可以从高校开始。加强高校与企业之间的合作,注重培养学生的开源精神,组织更多开源活动,后面的事情自然水到渠成。

星爵

Zilliz 创始人兼首席执行官

LF AI&DATA 董事会主席

从近年来的统计数据来看,中国开源在科研界、工业界,甚至投资界都有空前高涨的热度。浪潮来临,也给中国开源事业带来了许多机会。

目前中国开源开发者主要以应用开发者为主。什么是应用开发者?就是以应用为主,将海外的优秀开源项目应用到系统中,解决实际问题。这点符合技术与学习的发展过程,是不错的起点。

但是在学习海外优秀开源项目的过程中,不单要注重应用,也要从技术上学习代码架构,更重要的是学习海外对开源项目的治理与规范,以及全球开放且分布式的规则制定

我们不仅要学习技术上的研发,还要学习技术上的运营。在多元文化下,如何在开源项目中快速达成分布式共识?全球开源的大背景下,没有见过面的开发者们,如何建立互信?这些都是我们要学习的点。

最后,我也希望中国能出现更多本土原创开源项目,当然这也是必然会出现的结果。先学习,再创新,结合本土丰富的应用场景,中国一定会成为全球第一的开源市场。此时我们懂得全球开源市场的游戏规则,就可以把优秀的项目更好的传播出去。

想要了解更多 AI 开源相关的内容,欢迎关注我们的社区活动与技术干货,更多精彩内容,敬请期待!

   欢迎加入 Milvus 社区

github.com/milvus-io/milvus | 源码

milvus.io | 官网

milvusio.slack.com | Slack 社区

zhihu.com/org/zilliz-11| 知乎

zilliz.blog.csdn.net | CSDN 博客

space.bilibili.com/478166626 | Bilibili

已标记关键词 清除标记